Climate Variability in Southern South America Associated with El Niño and La Niña Events

2000 ◽  
Vol 13 (1) ◽  
pp. 35-58 ◽  
Author(s):  
Alice M. Grimm ◽  
Vicente R. Barros ◽  
Moira E. Doyle
2019 ◽  
Vol 64 (8) ◽  
pp. 900-909 ◽  
Author(s):  
Guillermo J. Berri ◽  
Emilio Bianchi ◽  
Gabriela V. Müller

2016 ◽  
Vol 42 ◽  
pp. 1-14 ◽  
Author(s):  
Olga Clorinda Penalba ◽  
Juan Antonio Rivera

Abstract. The ENSO phenomenon is one of the key factors that influence the interannual variability of precipitation over Southern South America. The aim of this study is to identify the regional response of precipitation to El Niño/La Niña events, with emphasis in drought conditions. The standardized precipitation index (SPI) was used to characterize precipitation variabilities through the 1961–2008 period for time scales of 3 (SPI3) and 12 (SPI12) months. A regionalization based on rotated principal component analysis allowed to identify seven coherent regions for each of the time scales considered. In order to identify the regional influence of El Niño and La Niña events on the SPI time series, we calculated the mean SPI values for the El Niño and La Niña years and assessed its significance through bootstrap analysis. We found coherent and significant SPI responses to ENSO phases in most of the seven regions considered, mainly for the SPI12 time series. The precipitation response to La Niña events is characterized with regional deficits, identified with negative values of the SPI during the end of La Niña year and the year after. During El Niño events the precipitation response is reversed and more intense/consistent than in the case of La Niña events. This signal has some regional differences regarding its magnitude and timing, and the quantification of these features, together with the assessment of the SST composites during drought conditions provided critical baseline information for the agricultural and water resources sectors.


2004 ◽  
Vol 22 (3) ◽  
pp. 789-806 ◽  
Author(s):  
V. Brahmananda Rao ◽  
J. P. R. Fernandez ◽  
S. H. Franchito

Abstract. Characteristics of quasi-stationary (QS) waves in the Southern Hemisphere are discussed using 49 years (1950–1998) of NCEP/NCAR reanalysis data. A comparison between the stationary wave amplitudes and phases between the recent data (1979–1998) and the entire 49 years data showed that the differences are not large and the 49 years data can be used for the study. Using the 49 years of data it is found that the amplitude of QS wave 1 has two maxima in the upper atmosphere, one at 30°S and the other at 55°S. QS waves 2 and 3 have much less amplitude. Monthly variation of the amplitude of QS wave 1 shows that it is highest in October, particularly in the upper troposphere and stratosphere. To examine the QS wave propagation Plumb's methodology is used. A comparison of Eliassen-Palm fluxes for El Niño and La Niña events showed that during El Niño events there is a stronger upward and equatorward propagation of QS waves, particularly in the austral spring. Higher upward propagation indicates higher energy transport. A clear wave train can be identified at 300hPa in all the seasons except in summer. The horizontal component of wave activity flux in the El Niño composite seems to be a Rossby wave propagating along a Rossby wave guide, at first poleward until it reaches its turning latitude in the Southern Hemisphere midlatitudes, then equatorward in the vicinity of South America. The position of the center of positive anomalies in the austral spring in the El Niño years over the southeast Pacific, near South America, favors the occurrence of blocking highs in this region. This agrees with a recent numerical study by Renwick and Revell (1999). Key words. Meteorology and atmospheric dynamics (climatology; general circulation; ocean-atmosphere interactions)


2009 ◽  
Vol 118 (3) ◽  
pp. 193-207
Author(s):  
Sergio H. Franchito ◽  
V. Brahmananda Rao ◽  
Ana C. Vasques ◽  
Clovis M. E. Santo ◽  
Jorge C. Conforte

2002 ◽  
Vol 107 (C12) ◽  
pp. 29-1-29-16 ◽  
Author(s):  
Mary-Elena Carr ◽  
P. Ted Strub ◽  
Andrew C. Thomas ◽  
Jose Luis Blanco

2009 ◽  
Vol 22 (7) ◽  
pp. 1589-1609 ◽  
Author(s):  
Alice M. Grimm ◽  
Renata G. Tedeschi

Abstract The influence of the opposite phases of ENSO on the frequency of extreme rainfall events over South America is analyzed for each month of the ENSO cycle on the basis of a large set of daily station rainfall data and compared with the influence of ENSO on the monthly total rainfall. The analysis is carried out with station data and their gridded version and the results are consistent. Extreme events are defined as 3-day mean precipitation above the 90th percentile. The mean frequencies of extreme events are determined for each month and for each category of year (El Niño, La Niña, and neutral), and the differences between El Niño and neutral years and La Niña and neutral years are computed. Changes in the mean intensity of extreme events are also investigated. Significant ENSO signals in the frequency of extreme events are found over extensive regions of South America during different periods of the ENSO cycle. Although ENSO-related changes in intensity show less significance and spatial coherence, there are some robust changes in several regions, especially in southeastern South America. The ENSO-related changes in the frequency of extreme rainfall events are generally coherent with changes in total monthly rainfall quantities. However, significant changes in extremes are much more extensive than the corresponding changes in monthly rainfall because the highest sensitivity to ENSO seems to be in the extreme range of daily precipitation. This is important, since the most dramatic consequences of climate variability result from changes in extreme events. The pattern of frequency changes produced by El Niño and La Niña episodes with respect to neutral years is roughly symmetric, but there are several examples of nonlinearity in the ENSO regional teleconnections.


Sign in / Sign up

Export Citation Format

Share Document